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The effects of external two-dimensional excitation on the plane turbulent wall jet 
were investigated experimentally and theoretically. Measurements of the streamwise 
component of velocity were made throughout the flow field for a variety of imposed 
frequencies and amplitudes. The present data were always compared to the results 
generated in the absence of external excitation. Two methods of forcing were used : 
one global, imposed on the entire jet by pressure fluctuations in the settling chamber 
and one local, imposed on the shear layer by a small flap attached to the outer nozzle 
lip. The fully developed wall jet was shown to be insensitive to the method of 
excitation. Furthermore, external excitation has no appreciable effect on the rate of 
spread of the jet nor on the decay of its maximum velocity. In fact the mean velocity 
distribution did not appear to be altered by the external excitation in any obvious 
manner. The flow near the surface, however, (i.e. for 0 < Y+ < 100) was profoundly 
different from the unforced flow, indicating a reduction in wall stress exceeding at  
times 30%. The production of turbulent energy near the surface was also reduced, 
lowering the intensities of the velocity fluctuations. External excitation enhanced 
the two-dimensionality and the periodicity of the coherent motion. Spectral analysis 
and flow visualization suggested that the large coherent structures in this flow might 
be identified with the most-amplified primary instability modes of the mean velocity 
profile. Detailed stability analysis confirmed this proposition though not a t  the same 
level of accuracy as it  did in many free shear flows. 

1. Introduction 
The plane turbulent wall jet, evolving over a flat surface in the absence of an 

external stream is a generic flow governed by the boundary-layer equations. 
Although this flow has been extensively investigated over the years because of its 
many engineering applications (see the review articles of Launder & Rodi 1981, 1983) 
it is still poorly understood. There is a general agreement that the mean velocity in 
the wall jet is self-similar but the parameters scaling it are controversial (Wygnanski, 
Katz & Horev 1992) in spite of the massive statistical data available in the literature. 
The complexity of this flow stems from the fact that its outer part resembles a free 
jet while its inner part resembles a turbulent boundary layer. In fact most models 
attempting to predict the average characteristics of the turbulent wall jet 
superimpose a free jet on top of a boundary layer and match the most obvious 
boundary conditions. 

Experimental investigations of large coherent structures in turbulent shear flows 
bypassed the wall jet, concentrating either on wall-bounded flows like a boundary 
layer or a channel (e.g. Willmarth 1975a,b), or on free shear flows like the mixing 
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layer, the wake and the jet (e.g. Ho & Huerre 1984: Wygnanski & Petersen 1987). 
In the latter category of flows, the large cohcrcnt structures were identified as the 
predominant instability modes and were quantitativcly analysed in this context. 
However, the large coherent structures in wall-bounded flows are much more 
complex and more difficult to identify than in free shear flows. Many forms of such 
structures have been observed visually (Kline et ul. 1967; Falco 1977) but no 
consensus was reached as to their origin and thcir precise association with the 
enhancement of the skin friction or with the rate of growth of the boundary layer. 
Since Hussain & Reynolds (1970, 1972) failed to excite growing two-dimensional 
modes in a turbulent channel flow, it was tentatively concluded that plane instability 
modes are not related to the large coherent structures observed in channels and 
boundary layers. However secondary instabilities, akin to the ones responsible for 
the generation of hairpin vortices in a laminar boundary layer (e.g. Craik 1985), may 
still be identified with the creation of large coherent structures in fully turbulent 
wall-bounded flows. In fact ' sublayer streaks ' were recently modelled by Landahl 
( 1990), by using an instability concept associated with three-dimensional in- 
termittent disturbances growing algebraically in the direction of streaming. 

Free shear flows are inviscidly unstable, while boundary layers in the absence of 
an adverse pressure gradient are not. There is enough evidence (Katz, Nishri 87, 

Wygnanski 1989) to suggest that a boundary layer on the verge of separation 
resembles a free mixing layer and its responds to external stimuli, like a mixing layer. 
The receptivity of this boundary layer is attributed t o  an inviscid instability which 
may dwarf, in this case, any other form of instability and generate large, 
predominantly two-dimensional, coherent structures. The generic wall jet is 
inviscidly unstable in its outer region and may thus possess large coherent structures 
characteristic of a plane turbulent jet. The similarity between the outer part of the 
wall jet and the free jet will be explored in this context and the relevance of the solid 
surface to the evolution of the large coherent structures will be assessed. From this 
point of view, the boundary layer in a strong adverse pressure gradient may be 
regarded as a wake evolving in the vicinity of a solid surface. In both flows the 
significance of the outer region is accentuated while the no-slip conditions at  the solid 
surface are maintained. 

The wall jet might be the ideal flow configuration for resolving the intricate 
interactions between the outer and the inner structures in a turbulent boundary 
layer, because it offers a larger degree of flexibility and controllability of flow 
parameters than a boundary layer does, regardless of pressure gradient. This 
flexibility stems from the fact that  a prescribed jet momentum can be maintained by 
changing the dimension of the nozzle and the efflux velocity simultaneously. 
Consequently, one can alter the vorticity in the outer layer without a concomitant 
alteration in the momentum input which might also change the susceptibility of the 
wall jet to external perturbations. Embedding the wall jet in an external stream (i.e. 
creating a tangentially blown boundary layer) increases further the parametric 
flexibility of this flow by enabling one to change the ratio between the free-stream 
velocity outside the boundary layer and the jet velocity near the solid surface. Thus 
the structure of the wall jet can be progressively altered and the importance of the 
outer vortical layer on the wall region can be evaluated. 

In  the present report we shall describe the major effects of a harmonic, two- 
dimensional excitation on the structure of a turbulent wall jet. Although the 
investigation is mostly experimental, it includes a rudimentary stability analysis in 
order to  quantify the scale and the intensity of the observed large coherent 
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structures. The experiments were carried out in air, on the simplest wall-jet 
configuration in the absence of an external stream or surface curvature. The flow was 
incompressible and the Reynolds numbers based on the efflux velocity and on the 
nozzle dimension varied between 3 x lo3 and 3 x lo4. 

2. A brief description of the experiment 
Although a detailed description of this apparatus has been given by Wygnanski 

et al. (1992, thereafter referred to as WKH) a schematic drawing of it is reproduced 
here (figure 1) in order to show where and how the wall jet was excited and provide 
a clear definition of the coordinate system used. 

Since the main purpose of this investigation was to determine the receptivity of the 
wall jet to two-dimensional forcing, the method of forcing, its frequency and 
amplitude were all considered as variables of potential importance. A thin metal strip 
spanning the facility was attached to  the upper lip of the nozzle with Scotch-tape 
which also served as a pivot around which the little flap could be deflected. The 
downstream side of the 6 mm wide flap was attached to a taut piano wire which could 
oscillate up or down depending on the movement of two shakers mounted outside the 
facility. The two-dimensional motion of this flap forced the initial shear layer locally, 
which blended with the outer part of the wall jet further downstream. Another, 
global method of forcing was provided by the oscillations of the cone of an 8in.  
loudspeaker mounted on the wall of the plenum chamber. The jet emerged from a 
nozzle of width b, with a top-hat velocity profile except for two thin boundary layers, 
one near the outer lip of the nozzle and the other near the wall. The thickness of both 
layers increased rapidly in the direction of streaming so that a t  X / b  = 1 the potential 
core had shrunk to approximately 70 YO of the nozzle dimension which was 5 mm for 
the data plotted in figure 2.  The plenum chamber excitation resulted in a fairly even 
distribution of oscillations across the entire jet in the plane of the nozzle, while the 
oscillations produced by the flap resulted in amplitudes which were concentrated 
near the outer lip of the nozzle and near the solid surface. The boundary layer near 
the solid surface was very receptive to these oscillations and at X l b  = 1 the 
maximum amplitude near the surface exceeded 40% of the amplitude measured in 
the wake of the flap. It is interesting to note that the mean velocity distribution was 
almost identical regardless of the method of forcing used. I n  order t o  make rational 
comparisons between the two modes of excitation, the integrated input amplitude 
across the flow was equated in both experiments. The data presented in figure 2 are 
an example for which this integral was nominally 5 Yo of the wall-jet exit velocity. 
This number is considered as the amplitude of the forcing a t  the nozzle, and it was 
allowed to vary between 2 % and 20 YO. Although this procedure does not uniquely 
establish all the aspects of external excitation, it enables one to reduce to two the 
number of independent parameters associated with the excitation (i.e. amplitude and 
frequency). The frequency of the forcing expressed in terms of a jet Strouhal number, 
St, =fb/U, varied between 3.4 x and 18.3 x 

The streamwise component of the velocity was measured with a single hot-wire 
probe starting some 20 slot widths downstream of the nozzle. Most of the 
measurements extended beyond 100 slot widths from the nozzle, where the 
maximum velocity in the wall jet dropped to approximately one quarter of its initial 
value. The Reynolds number at  the nozzle was altered by changing the efflux 
velocity, 9, between 10 and 50m/s and/or by changing the width of the slot, 
b, between 2.5 and 7.5 mm. The range of Reynolds numbers considered was: 
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FIGURE 1. A schematic of the wall-jet apparatus. 
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FIGURE 2. The streamwise velocity and r.m.s. distributions at X / b  = 1 for the two methods of 
excitation: 0 ,  forcing by flap; A, forcing by speaker. 
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Symbol (m/s) b (mm) Re, f(Hz) S t x  1015 r.m.5. 
(%I 

0 10 5 3 400 34 444 5 
A 4  15 5 5 000 34 88 5 

15 5 5 000 34 88 10 
15 5 5 000 34 88 20 

JC 

00 15 5 5000 5 13 2 
0 15 7.5 7500 15 17 5 
Is) 15 7.5 7500 15 17 2 
0 30 5 10000 34 5.5 5 
00 57 5 19000 34 0.4 2 
Q Q  57 5 19000 34 0.4 2 (Flap) 

15 5 5000 10 25 5 (Flap) 
15 5 5000 5 13 2 (Flap) 

= a  

TABLE 1 .  Symbols used in the figures 

3 x lo3 < Re, < 3 x lo4, where Re, = Ujb/v .  Hot-wire data were acquired and analysed 
digitally together with an oscillator signal which was used to force the wall jet. This 
signal also provided a phase reference for the phase-locked data. 

3. Experimental results 
3.1. The effects of forcing on Reynolds-averaged quantities 

External excitation of free shear flows, like the mixing layer, has a strong effect on 
a variety of time-averaged quantities like the mean velocity distribution, the rate of 
spread of the flow, the turbulent intensity and the Reynolds stress. It is thus natural 
to start the present discussion of the experimental results by exploring parametrically 
the effects of forcing on the same quantities in the wall jet. 

The mean velocity profile is usually plotted in similarity coordinates in which the 
velocities measured at  a given X-location are scaled by the local maximum velocity 
Urn, and the distances from the wall are divided by the distance at  which the velocity 
had decreased to half of its local maximum value in the outer part of the flow. The 
unperturbed wall jet is self-similar because the normalized velocity profiles measured 
at  numerous X-locations collapse onto a single curve irrespective of Reynolds 
number provided the latter exceeds a certain threshold level. 

A variety of forced flows were considered in the present experiment : they differed 
in jet momentum, slot width, frequency and amplitude of the imposed oscillations, 
and finally the manner in which forcing was introduced to the flow. Whenever one 
of the above parameters was changed the entire velocity field had to be mapped. A 
sample of the data is shown in figure 3. The symbols used in this and subsequent 
figures are defined in table 1. The velocity profile plotted in figure 3 (a)  exhibits self- 
similarity with respect to YmlZ and Urn irrespective of the X-location (which was 
altered between 30 to 120 slot widths) while the profile plotted in figure 3 ( b )  proves 
the existence of self-similarity irrespective of the changes in all other parameters 
considered. Both profiles are compared to the dimensionless, unforced, velocity 
profile measured by WKH and represented by a solid curve. One may conclude that 
two-dimensional external excitation does not affect the normalized form of the 
velocity distribution within the range of parameters considered. Replotting the 
velocities adjacent to the wall on an expanded scale (figure 3 c ) ,  and comparing them 
to unforced velocity measurements at  otherwise identical conditions, indicate small 
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FIGURE 3. Velocity profiles using self-similar coordinates : (a )  same Re,, St and forcing frequency 
but different X-locations; ( b )  various Re,, jet momenta, amplitudes and frequencies; (c) the same 
as ( a )  but plotted on an expanded scale showing the wall region only. -, Unforced velocity 
profile at = 50 m/s measured by W, K H. The symbols are defined in table 1.  

but consistent differences between the two sets of data. These differences will be 
discussed later in some detail. 

The rate of spread of the wall jet and the rate of decay of its maximum velocity 
are somewhat affected by the external excitation. These effects, however, are 
considerably smaller than anticipated on the basis of experience accumulated in free 
shear flows. The data presented correspond to an initial, average forcing amplitude 
of 2%, which was the lowest considered here, although it is thought to be high by 
free jet-flow standards. The rate of spread of the jet was increased slightly owing the 
excitation, particularly when compared to the unforced flow at higher nozzle 
Reynolds numbers (figure 4a) ,  while the rate of decay of Urn increased more 
effectively a t  lower Rej (figure 4b). The solid lines in this figures represent a linear 
least-square fit to the present data, while the dashed lines provide a comparison with 
the unforced flow. Alternative methods of forcing (i.e. flap or plenum chamber 
excitation) had a minimal impact on either quantity plotted in figure 4. When the 
ratio [q/Urnl2 is plotted against the dimensionless distance from the virtual origin of 
the flow, the data are reasonably well represented by a straight line, suggesting that 
the approximate decay of the maximum velocity is proportional to (X-X , ) - i  
regardless of forcing. The virtual origin was defined by requiring that the 
extrapolated value of (q/Vrn)2 = 1 in the plane of the nozzle. In the specific case 
shown the data representing the local width of the flow Ymlz may also be extrapolated 
to Ymlz = b at X = 0 but this was not the criterion used in determining the virtual 
origin. On the basis of the data shown in figure 4 one may conclude that the effect 
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FIGURE 4. The effects of forcing on Reynolds-averaged quantities : (a) the evolution of the width 
of the wall jet with X ;  ( b )  the decay of the maximum velocity with X ;  (c) a local distribution of the 
square of the mean velocity. ----, Unforced ; -, linear least-square fit. 

of Re, on the mean velocity distribution in the wall jet is much more significant than 
the effects of external excitation. 

Plotting the square of the mean velocity profile in dimensional coordinates (figure 
4c)  suggests that the externally excited jet retains more of its initial momentum at 
a given cross-section than the regular, unforced, wall jet. Furthermore, if one recalls 
that the average turbulent wall jet loses less than 8 YO of its initial momentum up to 
X / b  = 100 (see Launder & Rodi 1981, p. 83) then the seemingly small differences 
between the momentum contained in the forced and unforced wall jets become 
considerably more significant. These differences disappear as a consequence of the 
normalization used in the quest of showing self-similarity (figure 3a,b) .  We may 
conclude that the local width of the wall jet and its local maximum velocity are much 
less receptive to external excitation than the comparable quantities in the free jet. 

A more appropriate comparison (figure 5 )  uses the variables suggested by 
Narasimha, Narayan & Parthasarathy (1973) and by WKH for the unforced wall jet 
because then the data are not contaminated by the effects of Reynolds number. In 
this case the dependent variables describing the mean velocity field: 

are functions of a single independent variable 6 = X J / v 2 ,  where J = [q b ] ,  v is the 
kinematic viscosity of the fluid, and X is the actual distance from the nozzle (because 
the distance between the nozzle and the virtual origin is, in most cases, negligible in 
comparison with X ) .  

The solid lines drawn in figure 5 represent the unforced data accumulated for 
Re, 2 7500 while the broken lines correspond to Rej < 5000. The symbols plotted in 
figure 5 (a ,  b )  represent data corresponding to various frequencies of excitation a t  
nozzle Strouhel numbers (St, =fi/q) of 3 < St, x lo3 < 17 (corresponding to 
St = f v3 /J2  of 0.4 < St x 1015 < 444) and amplitudes, based on the streamwise 
velocity perturbation near the nozzle, ranging from 2% to 20%. Although some 
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FIGURE 5. The effects of forcing on Urn and Ym12 as functions of 6 :  (a) the maximum velocity of the 
jet; ( b )  the width of the jet; ( c )  the same as (a) but X is measured from the virtual origin; (c) the 
same as (b)  but X is measured from the virtual origin. ---, Unforced data Re, = 2 7500; -, 
Re, < 5000. 

consistent differences depending on the level of forcing and on the Strouhal number 
can be detected they do not alter our initial conclusion about the lack of sensitivity 
of these mean-flow parameters to the external excitation. The cumulative effect of 
the threshold in Rej which is associated with transition in the nozzle and occurs 
around Rej x 5000 appears to be much more significant than the effect of the two- 
dimensional excitation. In the unforced case, this dependence on the threshold value 
in Rej was essentially eliminated by accounting for the virtual origin of the flow 
which shifted downstream a t  higher Reynolds numbers. In  fact, one may replot the 
data shown in figure 5 (a, b )  against a new dimensionless distance measured from the 
virtual origin (i.e. (X--X,,)J/u2) and ignore the effects of forcing on the rate of spread 
(figure 5c, d )  although the apparent scatter suggests that the mean flow might be 
weakly dependent on external excitation. One should remember that the data are 
plotted on a compact logarithmic scale because of the ' power-law ' dependence of 
Urn and Ym12 on 5. Dimensional analysis of the independent parameters in the 
externally excited wall jet suggests that variables other than 6 might affect the mean 
velocity distribution. Whenever the external excitation is harmonic, the broadening 
or the distortion of mean flow will depend on the square of the local amplitude of the 
velocity perturbations. In some cases the finite amplitude might be introduced 
directly by the forcing mechanism, while in others the flow itself might act as an 
amplifier. Before exploring the specific effects of the amplitude and the frequency of 
the excitation on the rate of spread of the wall jet we shall examine the global effect 
of the excitation on the loss of momentum resulting from skin-friction drag. 

The velocities plotted in figures 3(c) and 4(c) suggest that forcing the wall jet 
might have an effect on the drag. Since the local skin friction is most conveniently 
determined from the slope of the mean velocity profile near the wall (WKH), the 
procedure was repeated here in spite of the fact that it is not considered in the 
literature as being very reliable (see also Launder & Rodi 1981). The velocity 
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5 

FIQURE 6. The effect of forcing on dU/dY near the wall; x , unforced; m, forced. St x 10l6 = 17, 
Re, = 7500. 

measurements plotted in figure 6 are shown in dimensional form because this 
representation enables the reader to assess the quality and the amount of data 
acquired in the viscous sublayer. Sometimes more than 10 data points were included 
in the linear fit made to the velocity profile near the wall. There is no doubt that even 
a relatively low level of forcing (the data plotted correspond to an initial amplitude 
of 2 YO) results in a reduction of the wall shear stress, 7,. Heat loss from the hot wire 
to the wall was negligible since the flow was turbulent and most of the data were 
taken at  distances from the wall ranging from 50 to 80 wire diameters while Re based 
on the wire diameter varied from 0.7 to 4 (see Wills 1962). 

Plotting 7 , / p ( ~ / J ) ~  versus 6 and comparing the results with the skin friction 
measured in the absence of forcing indicates clearly the differences in 7, in spite of 
the logarithmic scale chosen (figure 7) .  At no instance did 7, increase above its 
nominal unforced value. Reductions in the skin friction of approximately 10 Yo were 
prevalent at most frequencies corresponding to initial excitation amplitudes that 
were lower than or equal to 5 %. However, reductions in 7, of approximately 40 Yo 
were also recorded by forcing at  much higher amplitudes corresponding to 10% or 
20% of the efflux velocity at the nozzle. Alternatively, forcing at a preselected 
frequency which is amplified by the flow may achieve the same drag reduction at  a 
much lower input amplitude (figure 7).  

In attempting to sort out the independent contributions of frequency (i.e. 
St = fus /J2) ,  amplitude and Reynolds number on the local 7,, one may assume that 
the dimensionless ( ~ , / p ( u / J ) ~  depends on the distance from the nozzle ( X J / v 2 )  and 
the local amplitude of the coherent and perhaps quasi-two-dimensional perturbation 
present locally in the flow. Neglecting the effects ofRel might be justified on the basis 
of the correlations derived for the unforced wall jet, but by neglecting the effects of 
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FIQURE 7.  The evolution of the dimensionless skin friction with 6 for various Reynolds 
numbers, Strouhal numbers and forcing amplitudes. 

St one tacitly assumes that large two-dimensional coherent structures are similar 
regardless of their size and origin provided their local intensity is accounted for in 
some manner. This is a crude assumption which might correlate the distortion of the 
velocity profile near the surface and the Reynolds stress in the wall region with some 
(as yet unknown) universal coherent motion. 

We computed the phase-locked ensemble-averaged velocity signals and from them 
deduced the local r.m.s. levels of the coherent motion. These quantities were then 
integrated across the flow to provide a measure of the intensity of the coherent 
motion a t  a given X-station : 

where ( U )  is the phase-locked velocity a t  a given Y and 

( U ) = -  (U>dt, ;JOT 
is the distance from the wall to  the location at which U/U, = 0.1 a t  the outer 

region and T is the period of the forcing signal. 
Some of the data sets shown in figure 7 were calculated as functions of the 

computed local amplitudes and then replotted again with 6 as the abscissa and with 
the local, cross-flow-averaged r.m.s. values of the coherent motion as parameters 
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FIGURE 8. The evolution of the dimensionless skin friction with 5 where (a) the r.m.s. value 
of the coherent motion is a parameter; (b )  the coherent signal at the forcing frequency is a 
parameter. L 

(figure 8a) .  One may deduce from this figure tKat a local coherent motion having an 
average amplitude of 0.3 % may be responsible for a reduction in T, of approximately 
15 Yn while an additional increase i,n loc.ai amplitude by a factor of 10 ! (i.e. to 3 % of 
9)  resulted in an incremental reduction in ( 7 , ) / p ( ~ / J ) ~  of an additional 15% only. 
This suggests that  the reduction in the local skin friction is not linearly dependent 
on the strength of the coherent motion as defined by the single parameter ( A ) .  

Fourier decomposition of the coherent signal prior to integration across the flow 
and a repetition of the procedure mentioned above a t  the forcing frequency 
correlates the dependence of (~,)/p(v/J)~ on the coherent amplitude of the motion a t  
this frequency (figure 8 b ) .  It appears that when the local amplitudes of the coherent 
oscillations at the forcing frequency are also 0.3%, the reduction in T, is also 15%, 
but a further increase in that amplitude to  3 % resulted in even smaller reduction in 
7, than estimated for the overall cohcrent signal. Since the difference in the 
estimation of T, between processing the broadband coherent signal or the coherent 
signal at the forcing frequency is small, one may attribute most of the reduction in 
7, to the forcing frequency. 

Isolating the effect of frequency on 7, is not a simple task. A typical wavelength 
associated with the forcing should be proportional to U , / f  which might be expressed 
in terms of the independent variables J and v as h cc J /v f .  Since the characteristic 
width of the flow, Ym,2, is proportional to v2 /J  the dimensionless ratio between these 
two lengthscales is 

as might have been deduced from dimensional analysis applied to  the fully developed 
wall jet (see WKH). However, when h becomes either comparable t o  the slot width, 
or to a characteristic length of the apparatus one ought to  be concerned with these 
dimensions. In  the first instance the details of the flow near the nozzle might affect 
the streamwise evolution of the jet, while in the second case the flow leaving the 
apparatus (i.e. the outflow conditions) might be of significance. By changing either 
the jet momentum or the slot width while holding the forcing frequency constant one 
alters not only the Strouhal number but the Reynolds number as well. Although each 
of these variables might affect 7, in a different why we may presume that the effect 
of Re, would be small provided the usual threshold value of Re, was exceeded. 

Inviscid amplification of two-dimensional disturbances in free shear flows occurs 
wherever the local wavelength of the disturbance is commensurate with the thickness 

st* = ( j v 3 / ~ z )  x 1015 
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FIGURE 9. The dependence of the dimensionless skin friction on the dimensionless frequency /3 when 
St is a parameter or on St when /3 is a parameter : ( a )  corresponds to a forcing amplitude of 5 % and 
( b )  to a forcing amplitude of 2%. 

of the flow. In the context of the present definition of the characteristic velocity and 
lengthscales, the maximum amplitude attainable a t  a prescribed streamwise location 
for a given excitation level should depend on 

P = 2nf Ym,2/Um, 

which is commonly used in hydrodynamic stability. In fact, a linear stability model 
applied to the wall jet suggests that all frequencies below /3 x 0.67 are amplified at 
sufficiently high Reynolds number. Consequently the dimensionless 7,, which also 
depends on the local amplitude of the perturbations, was plotted as a function of p. 
It is self-evident that P depends on the imposed frequency and on X (/3 oc X1.35 ; see 
WKH) and therefore represents a product of two independent parameters. 

All the data presented in figure 9 ( a )  were taken a t  a single initial excitation level 
of 5 % and in figure 9 ( b )  of 2 YO. Each set of measurements (connected by a solid line 
in figure 9a)  corresponds to a prescribed St* and to a constant value of Rej. One may 
observe that for a given set of initial conditions (i.e. prescribed J , v , p , f  and a 
constant imposed amplitude) the local value of (7,)/p(v/J)' depends on /3 and 
therefore, a t  a constant St*, (7,)/p( v / J ) ~  decreases with increasing X (i.e. increasing 
p). The role of Rej appears to be minor, as might be recognized by comparing two sets 
of data taken a t  different Rej (5000 and 7500) but only slightly different St* (figure 
9 b ) ,  or at a constant Rej = 5000 but a very different St* (8t x 1015 = 25 and 88; figure 
9a).  The data plotted in figure 9 ( b )  may also serve as proof that 7, is independent 
of the method of forcing because all filled symbols in this figure represent the method 
of shear-layer excitation using the flap, while all other symbols represent the global 
plenum-chamber excitation. Furthermore, since the results corresponding to an 
initial forcing level of 2% can hardly be distinguished from comparable data 
obtained a t  a forcing level of 5 %  (at identical values of St*), one may suggest that 
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the flow is not very sensitive to differences in the initial amplitude levels in the range 
of amplitudes considered. 

Each solid line in figure 9(a)  reflects the dependence of 7, on X; the vertical 
displacement of these lines at  a prescribed J / v  reflects the dependence of 7, on the 
frequency of the imposed oscillations. It appears that the lowest possible frequency 
of forcing is most effective in reducing the local 7, at a predetermined streamwise 
location (i.e. at some prescribed Yrn,2 and Urn). One may cross-plot the local 
dimensionless 7, using /3 as a constant parameter with St* as an abscissa (the broken 
lines in figure 9a represent constant value of /3 and should be looked at in conjunction 
with the lower scale representing St*). This plot enables one to observe the 
dependence of ( 7 , ) / ~ ( v / J ) ~  on St* for a prescribed amplification rate of the 
disturbance which uniquely depends on the value of ,8 provided the process is linear. 
For small values of ,8, one may fit straight lines, which have an approximate slope 
of unity, t o  the curves ,8 = constant and thus conclude that for a constant rate of 
amplification : 

~ , / p  = fv+const. 

Although both the validity and the accuracy of this relationship are limited, it may 
serve as a first-order approximation in assessing the dependence of the local skin 
friction on frequency in a two-dimensionally forced wall jet. It is interesting to note 
that the lowest St a t  which excitation has an effect on drag was not reached in the 
present experiment. 

Given the sensitivity of 7, to the local amplitude of the phase-locked disturbance 
(figure 8), one could expect an adverse effect on 7, wherever /? exceeds the value 
corresponding t o  the amplified frequency of the imposed oscillations (i.e. the neutral 
point on the linear stability diagram) because thereafter the amplitude of the waves 
would have to decrease. This might have been the case if /3 were independent of X and 
the amplification process were entirely linear. The observed reduction of the skin 
friction may be partly attributed to nonlinear processes associated with the 
generation of a subharmonic frequency which was clearly observed a t  large distances 
from the nozzle. The interaction with the incoherent Reynolds stresses might also 
had some effect on the h a 1  outcome. 

The fractional loss of momentum in the direction of streaming is equal to frictional 
losses integrated over a prescribed distance : 

Since the prediction of drag and its possible reduction by active means is of primary 
interest to the practising engineer, this quantity is plotted 08. the physical distance 
X / b  (figure lo), knowing full well that Rej becomes an important factor in this plot. 
It was decided to begin the calculations from X / b  = 30, where the wall jet was fully 
developed. Four cases are plotted in figure 10 ranging in St from 444 x to 
5.5 x and in Rej from 3400 to lo4 respectively. The amplitude of forcing was 
maintained at 5 % throughout but the slot width was maintained at 5 mm in figures 
10(a, 6 ,  d )  while being increased to 7.5 mm in figure lO(c). This change in the slot 
width implies that the data shown in figure 1O(c) correspond to a physical distance 
which is 50% larger than in the rest of the plots. The dimensionless distance 6 is 
shown above each figure for reference. The vertical distance between the curve 
representing the forced data and the unforced one corresponds to actual drag 
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FIQURE 10. The overall drag reduction due to external excitation: (a) Re, = 3400, St x los = 
444; ( b )  Re, = 5000, St x 10l6 = 88;  ( c )  Re, = 7500, St x 1015 = 17; (d )  Re, = 10OO0, St x 10" = 
5.5. 

reduction due to forcing. By comparing these differences at X l b  = 100 and 
normalizing the data by the local unforced values of momentum loss one gets a drag 
reduction of 15 % corresponding to the case plotted in figure 10 (a)  ; 19 % in (b)  ; 22 % 
in (c) and 27% in ( d ) .  These results reinforce our previous conclusion that most 
efficient drag reduction is obtained by low-frequency forcing. 

A comparison was made between the mean velocity distributions of the forced and 
the unforced wall jets in the vicinity of the surface by using the conventional 'wall 
coordinates '. Velocity profiles corresponding to three of the five sets of data shown 
in figure 9 (i.e. a t  Stx 1015 = 444, 88, 5.5 and Rej = 3400, 5000 and 10000 
respectively) are plotted in figure 11 on a semi-logarithmic scale. The ordinate of each 
family of profiles was shifted to provide a clearer visual assessment of the effects of 
forcing. Since each of the measured velocities was rendered dimensionless with 
respect to the local friction velocity V, = (7,/p$, one expects that the effects of 
forcing on the velocity distribution will correlate with the effects of forcing on 7,. 

This proved to be the case because the average reduction in 7, corresponding to 
St x l O l 5  = 444 was 15 YO while for St x 1015 = 5.5 it was 34 YO (see also figure 7) ,  which 
manifested itself in the largest disparity bettween the forced and the unforced 
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velocity distributions. It seems that external excitation modifies the velocity 
distribution in what appears to be the logarithmic region although the existence of 
such region in the range of Re considered is doubtful. WKH had shown that the slope, 
A ,  of the logarithmic profile (U+ = A log Y++B, where U+ = U/U, and Y+ = YU,/v) 
appears to be a universal constant and is equal to 5.5, while the additive constant B 
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FIQTJRE 12. The total and viscous shear stress distribution and the turbulent kinetic energy 
production near the surface: (a )  Re, = 10000; X l b  = 70, St x 10" = 5.5;  ( b )  Re, = 3400, 
X l b  = 50, St x 10l6 = 444. x , Unforced ; 0, forced. 

was strongly dependent on Reynolds number. This conclusion applies to the forced 
wall jet as well. It also appears that the logarithmic fit to the forced data may only 
be applied at larger values of Y+ than for the unexcited flow. 

WKH showed that some of the underlying assumptions used in deriving the 
logarithmic velocity profile cannot be applied to the wall jet which they had 
investigated (i.e. that neither is the logarithmic region far removed from the location 
at which Y = Y, nor is the stress constant within that region). Consequently 
the existence of the logarithmic region appears to be somewhat fortuitous. The 
introduction of forcing did not only affect r, but also reduced the extent of the 
constant-stress layer (figure 12). The total and the viscous stress distributions in the 
inner part of the wall jet are plotted at  the top of this figure in order to assess the 
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FIGURE 13. The distribution of (2); across the flow: (a) for the unforced jet; (b) for the forced jet, 
St x 1015 = 88, Re, = 5000; ( c )  a comparison of both cases in the vicinity of the wall: 0,  forced, 
St x = 5.5, Re, = 10000; x , unforced. 

effects of excitation on these quantities. The wall stress, which is entirely viscous at 
the surface, is reduced by the two-dimensional forcing. However for Y+ > 10, the 
effect of excitation on the viscous stress vanishes since forcing ceases to have an effect 
on the mean velocity profiles in this region and thus on v(aU/aY). A t  Y+ > 30 where 
the contribution of the viscous stress to the total stress becomes vanishingly small, 
the latter decreases rapidly with increasing distance from the wall and changes sign 
between 60 < Y+ < 100 depending on the forcing and on Rej. 

The lateral distribution of turbulent energy production, - (u’v’) aU/aY, with 
increasing distance from the surface is also plotted on figure 12 for the two examples 
considered above. It is clear that external excitation reduces the Reynolds stress and 
with it the turbulent production. The integrated turbulent production in the inner 
region of the wall jet between the surface and the location at  which Y = Y, is defined 
by 

au 
ay 

‘Oo0 s,” - (u’w’) -dY. Production = - (urn)3 (3.3) 

For St = 5.5 a t  X / b  = 70 forcing reduced the value of the production integral from 
0.668 to 0.214 while for St = 444 and X / b  = 50 the production integral was reduced 
from 1.16 in the unforced case to 0.646. This is a significant effect which presumably 
alters the entire turbulent energy balance in this flow and not just the scales of the 
large coherent eddies. Since the mean velocity gradient vanishes at  Y+ x 150, the Y -  
locations at which u‘v’ = O and at which aU/aY = O do not coincide, leading to  a 
region of a weak but negative turbulent production just below the location at which 
Y = Y, (see also Kruka & Eskinszi 1964). 

No significant difference attributed to forcing could be seen in the level or in the 
distribution of the longitudinal component of the velocity fluctuations, when the 
latter are plotted in traditional similarity coordinates spanning the wall jet (i.e. 
0 < Y/Yrn,, < 1.5; see figure 13a, b ) .  In view of the lack of self-similarity in the 
unexcited flow which is most noticeable in the wall region (figure 13a), one is obliged 
to assess the effects of forcing at some prescribed values of (or X l b )  for the same 
efflux conditions at  the nozzle. In  order to avoid differences in the value and location 
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FIQURE 14. The applicability of the ‘defect-law ’ to  the forced wall jet. 

of Urn, the results shown in figure 13(c) are normalized by the conditions at the nozzle. 
Forcing the wall jet reduces the turbulent intensity in the vicinity of the surface and 
this reduction is strongly affected by St while all other parameters are maintained 
constant. The reduction in u’/q in some places exceeds 25 YO as may be deduced from 
figure 13 ( c )  (see the arrow comparing one data point a t  X l b  = 40 and St = 5.5 which 
provides an example). Since the production of turbulence increases the level of u‘, the 
reduction in u‘ due to forcing might be a direct result of the reduced production level 
near the wall. 

The velocity defect law is not affected by the external excitation, as may be 
observed from the plot showing the variation of (U- U,)/U, with distance from the 
surface (figure 14). The solid lines plotted in the figure represent the scatter measured 
in the absence of forcing, while the symbols correspond to a variety of forced 
conditions. Consequently, even in these highly stretched coordinates, no differences 
and no particular trends could be detected in the velocity defect laws. 

3.2. Visual identi$cation of large coherent structures 
In order to observe large coherent structures in the fully developed region of the wall 
jet (i.e. a t  X l b  > 30) tracer particles have to  be introduced near the nozzle. 
Otherwise, the turbulent flow inside the jet and the irrotational flow in its 
neighbourhood, which are both unsteady, will disperse the tracer particles in a 
random fashion, not allowing them to organize into visible streaklines. Consequently, 
the width of the slot has to be small, because we are not interested in seeing the 
structures generated by the mixing layer, and the efflux velocity has to be large, 
because we want the flow to be turbulent. These conditions impose severe restrictions 
on the type of flow visualization which can be used, eliminating some of the most 
convenient techniques. The smoke wire for instance, could not be used near the 
nozzle, since it could not provide a sufficient concentration of tracer particles 
required in the high-velocity stream. 

By introducing concentrated smoke into the entrained fluid upstream of the 
nozzle, while the turbulent wall jet was forced, we could observe the existence of 
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FIGURE 15. Flow visualization of the forced wall je t :  ( a )  large coherent structures in the 
turbulent wall jet; ( b )  instabilities of the laminar wall jet. 

coherent structures (figure 15a) in the developed region of the flow a t  Re x 5000. The 
Kelvin-Helmholtz instability prevailing in the mixing layer occurring near the outer 
lip of the nozzle, caused the entrained smoke to roll into a large eddy as it does in the 
classical mixing layer. Thereafter, the smoke particles were swept towards the wall 
as a result of the negative vorticity existing in the boundary layer and thus the 
streaklines appeared to have crept upstream relative to their position far away from 
the surface. If the same experiment were repeated in a free jet, the particles 
approaching the core would have been swept downstream as a result of the faster 
advection in the core region. The particles were then ejected away from the surface 
into the outer jet zone of the wall jet, forming a second eddy characteristic of a plane 
jet or a mixing layer (a weak trace of this second eddy can actually be observed in 
the photo). Smoke concentrations distributed at regular intervals, corresponding to 
the wavelength associated with the periodic sweeps near the wall, are visible at  larger 
distances from the nozzle. The periodicity of these sweeps suggests that the wall jet 
is susceptible to external excitation and it contains coherent structures which 
combine the characteristics of a plane jet and a boundary layer. 

The instabilities in the laminar wall jet could be made visible by using a smoke 
wire after the efflux velocity was considerably reduced. The three streaklines seen in 
the photograph (figure 15b)  originated in the potential core of the jet. The roll-up 
occurred further from the nozzle and it clearly shows the double structure of the 
eddies associated with the outer and inner regions of the wall jet. The eddy structure 
near the surface could be interpreted in terms of the terminology suggested by Kline 
et al. (1967) for the coherent structures observed in the turbulent boundary layer. 
One may indeed see high-speed sweeps towards the wall being interspersed by 
ejections of fluid from the wall. The outer eddies, which are characteristic of a plane 
jet, reside above the ejected fluid of the inner structures, providing constructive 
induction for the ejected fluid. This double structure of eddies stems from the shape 
of the wall-jet profile (as provided by Glauert’s 1956 solution) which can support the 
coexistence of two instability eigenmodes. The structures observed in figure 15 ( b )  
were predicted by Tsuji et al. (1977) who solved the Orr-Sommerfeld equations for 
Glauert’s profile. Although the flow in the turbulent wall jet is different, because of 
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the existence of three-dimensional vorticity fluctuations which are omnipresent in 
turbulent flows and because of the relative thinness of the inner boundary layer, a 
qualitative similarity between the observations made in figures 15 (a) and 15 (b) does 
exist. The existence of two rows of vortices in turbulent flow is, however, doubtful. 
It seems that the large eddies observed in figure 15 (a) extend from the surface to the 
outer flow. Thus the turbulent wall jet, cannot be analysed as if it consisted of two 
independent flows which are merely superposed one on top of the other, and the idea 
of strip integration may have to be revised. 

3.3. The application of linear stability analysis to the turbulent wall jet 

The propagation and amplification of small-amplitude wavy disturbances, in slightly 
divergent free shear flows has been discussed by Crighton & Gaster (1976), Gaster, 
Kit & Wygnanski (1985), Cohen & Wygnanski (1987), and others. The application of 
this analysis to the wall jet is, in principle, the same, with the exception of the 'no- 
slip ' boundary conditions a t  the wall and the need to use the viscous form of the 
Orr-Sommerfeld equation. This problem was also analysed by Gaster (1974) in 
conjunction with the stability of the divergent boundary layer. The stability of the 
non-divergent laminar wall jet was considered by Tsuji et al. (1977). We shall, 
therefore, not repeat these derivations and only dwell on the specific aspects (or 
difficulties) stemming from the application of this model to the turbulent wall jet. 

First, one has to define the measured mean velocity distribution with maximum 
precision possible, because both U and U" (i.e. the second derivative of the velocity 
with respect to Y )  are needed as inputs into the Orr-Sommerfeld equation. The outer 
part of the wall jet can be easily described analytically using conventional similarity 
variables but to fit an analytic function for the inner region is not a simple task 
because of the very steep gradients involved. These difficulties are further 
compounded by the fact that the inner part of the velocity profile is dependent on 
Reynolds number. The analytic description suggested by J. Cohen takes the 
following form : 

Note that the no-slip condition a t  the wall, as well as the disappearance of viscous 
stress a t  ym, are implicitly satisfied by the virtue of the above definition of 0 (i.e. 
O(0) = 0 and (dO/dy)(ym) = 0). 

The five parameters; A ,  Q ,  p, D ,  K are determined by the following boundary 
conditions : 

dO 
- ( y = O ) = C > O ,  
dY 

where C is a given slope, 

(ii) 
d2 0 
-(y = 0) = 0, 
dY2 
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used in the stability calculations. 

(iii) O(y,) = qy;) = 1 ,  

(v) q y  = 1) = g. 
This empirical description of the velocity profile fits the data well (figure 16) and 
satisfies the need for a continuous second derivative which vanishes at  the surface 
because of the absence of pressure gradient. The variation of very near the surface 
is shown in the insert to figure 16. It indicates that u" increases by three orders of 
magnitude (to a level of -3200) within 0 < (Y/YmI2) < 0.01. The abrupt increase in 
P poses a major difficulty in calculating the linear stability characteristics of the 
turbulent wall jet. The need for a precise definition of u" is also stressed by Tsuji 
et al. (1977) who compared the stability of a laminar wall jet with the stability of the 
flow resulting from laminar free convection along a vertical flat plate. Although both 
velocity profiles look alike, their stability characteristics are different because 
Glauert's (1956) solution has an inflexion point at the wall which gives rise to another 
eigenmode of instability a t  Re, = Um Ym12/v > 300. We did not find another unstable 
mode for the velocity profile described above. This might be attributed to the very 
steep gradients encountered (figure 16) and our inability to resolve the gradients in 
tr" with an adequate accuracy. The possible existence of another instability mode 
should not, however, be ruled out. 

The perturbation stream function initially assumed for the locally parallel mean 
flow is given by 

$(Y, t )  = qi(Y) exp [i(.x-P~)11 (3.5) 

where 

The eigenfunction #(x, y) satisfies the Orr-Sommerfeld equation : 

(0- c )  (qi" -a2#) - Pqi + (i/ccR) [QV - 2a2qi + a4qi] = O 
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R = Urn YmiZ/v as a parameter. 

subject to the boundary conditions 

because (3.6) is solved locally for each U(x, y). A real frequency parameter P(s) 5 
[217jY,,,/Um] and a complex wavenumber a(z)  are the eigenvalues of the equation 
determining the phase velocity c = P/a for a given Reynolds number 

R = Re, = U, Ymlz/v. 
A GramSchmidt orthonormalization procedure was used to solve the equation 
because the coefficient (i1a.R) multiplying the highest derivative in (3.6) is very small. 

One starts the solution process by guessing a(x) and improving on the guess until 
the boundary conditions are satisfied. Since this ‘shooting ’ procedure is very 
sensitive to the initial guess of a, the latter was obtained by solving the inviscid 
equation first although it did not satisfy the boundary conditions at the wall. The 
eigenvalues determined from the solution of (3.6) which correspond to the complex 
wavenumber are plotted in figure 17 as functions of the real frequency parameter for 
a variety of Reynolds numbers. The plotted solutions bracket the range of 
frequencies in which the perturbation is amplified (i.e. ai < 0). One may observe that 
the real part of 01 is almost independent of Reynolds number while the imaginary 
part of a is weakly dependent on R beyond R > 1000. These results provide an 
explanation for the success of the inviscid equation in predicting a. They also help 
in identifying the relationship between the large coherent structures in the wall jet 
and the instability modes. One may expect the predominant frequency of the large 
coherent eddies to correspond to p x 0.6 since this is the frequency a t  which these 
eddies completed their amplification cycle. Furthermore the expected celerity of the 
large coherent structures is approximately O.SU,. 

The effect of the slight divergence of the mean flow may be accounted for by 
modifying the perturbation stream function to the form 

$(x, y, t) =Ao$(z ,  y) exp ia(x)-- dx-iat KO[ ::;I 1 (3.7) 
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where now 

A ,  is an arbitrary constant determined to give 

J; A ,  Id,(P> Y)I dy = 1 a t  x = x,. 

Substituting (3.7) into the equations of motion yields the OrrSommerfeld 
equation (3.6) to  the first level of approximation a t  a given coordinate x, which is 
considered as a parameter. In the present equation all velocities and lengths are 
scaled with 9 and b respectively while R = Rej = Lj b / v  (e.g. 0 in the current form is 
actually 0 of (3.4) times Um/q. 

The solvability condition provides the solution for N ( x )  and M ( z )  which reflect the 
non-parallel effects on the overall amplification : 

N(x) = J; 9, {a,(P- 3001) $ + [Zap- 3Ua2 - 9,] $, + 0q5,yy + 0,, $, 
+ ~($, , , -~P$y)-~[a,($,V-3~2$)+2~(P, ,y-a2q5,) l}d~,  2i (3.8) 

and 9, is the adjoint eigenfunction satisfying 

(3.10) 
i 

( 0 - c )  [ ~ , , - a $ 1 + 2 ~ ~ , + ~ [ 9 , , , ~ , - 2 a ~ ~ , , + a ~ ~ i =  0, 

which is solved together with (3.6). 

3.4. On the possible relationship between large coherent structures and the 
predominant instability modes 

The identification of the large coherent structures with the predominant instability 
modes of the mean motion is accomplished in part by resorting to spectral methods. 
Power spectral densities of the streamwise component of the velocity fluctuations 
were measured at several streamwise locations in the flow ranging from X / b  = 30 to 
100. The measurements presented in figures 18(a) and 18(b)  represent data taken 
near the surface (Y/Ym,, x 0.15 where U/Um x l ) ,  while data acquired near the outer 
edge of the wall jet (Y/Ym12 = 1.8 where U/U, E 0.1) are plotted in figures 18(c) and 
18 ( d ) .  In  order to accentuate the characteristic frequency associated with the 
passage of the large eddies, the abscissa on this figure represents frequency plotted 
on a logarithmic scale while the ordinate represents the power spectrum F multiplied 
by the frequency in order to eTipartition the contribution of each frequency to the 
total turbulent energy [i.e. u’~  cc j F (  f )  df = fF(f) d(1og f )]. Only the most sig- 
nificant decade of each spectrum has been plotted. One may observe that the 
predominant frequency decreases in the direction of streaming in conjunction with 
the broadening of the jet and a decrease in its maximum velocity. These power 
spectra become approximately self-similar when they are replotted against /3 (figure 
18 b,  d ) ,  which represents the dimensionless frequency governing the linear stability 
of this flow. Furthermore, the peak in the spectrum measured a t  the outer part of the 
wall jet (figure 18d) corresponds to /3 x 0.5 which is in the neighbourhood of the 
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FIGURE 19. (a) Phase-locked and ensemble-averaged velocity traces across the jet plotted together 
with the forcing signal. ( b )  A comparison between the amplitude calculated using the linear 
stability theory and the ensemble-averaged amplitude measured in the flow at the imposed 
(fundamental) frequency. 

frequency which might have undergone the highest possible linear amplification, 
suggesting that the large eddies observed in the outer part of the unexcited turbulent 
wall jet might be represented by the most amplified spatial normal modes. 

The power spectrum measured very close to the surface (figure 18b) peaked near 
the first harmonic frequency of the predominant power spectrum in the outer flow 
and the drop-off at  the higher frequencies did not scale with /3. This might be due to 
some nonlinear effects which are more prominent near the surface or perhaps due to 
the existence of another mode of instability (Tsuji et al. 1977). Nevertheless, there is 
sufficient reason to believe that the primary large coherent structures existing in this 
wall-bounded flow are related to the most unstable linear modes in a fashion similar 
to that in free shear flows. 

3.5. The evolution of harmonic perturbations in the wall jet 
Harmonic excitation of the wall jet enabled us to digitize the measured velocities at 
any streamwise location, together with the forcing signal which was used to deflect 
the flap or to change the displacement volume in the settling chamber. This signal 
(plotted a t  the bottom left corner of figure 19a) provided the necessary phase 
reference with respect to which other measurements taken anywhere in the flow 
could be referred and ensemble averaged. Since there is a possibility of a subharmonic 
resonance, the long-time series were subdivided into segments which contain two 
waves of the forcing frequency. Such phase-locked and ensemble-averaged traces of 
the streamwise component of velocity taken at X / b  = 60 and Y/Y,,* ranging from 
0.016 to 3.6 are plotted above the forcing signal on figure 19(a) .  The periodicity of 
this signal is self-evident but its harmonic distortion varies with Y. The least 
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distorted signals appear at thc outer edge of the flow where the velocity is not 
contaminated by turbulence. Onc may observe a slow phase advance in the 
maximum velocity recorded with increasing distance from the wall provided 
Y/Y,,, < 1. A t  this Y-location, which approximately coincides with the inflexion 
point of the mean velocity profile, a sudden phase shift occurs which is followcd by 
a gradual phase delay with increasing Y. One may Fourier decompose these signals 
and plot the transverse distributions of amplitude and phase of the signals a t  the 
frequency of forcing. The transverse distribution thus obtained, may be compared 
with the amplitude and phase distributions calculated from the linear stability 
model. An example of such a local comparison is shown in figure 19(b) where an 
amplitude calculated by solving the Orr-Sommcrfeld equation is plotted. Both 
measured and calculated amplitude distributions are normalized by their local 
maximum which occurs fairly close to  the wall. 

When a similar comparison was done in highly unstable, unbounded turbulent 
shear flows like the mixing layer, the interaction between the coherent motion and 
the incoherent turbulence was not accounted for. Since these flows were dominated 
by an inviscid instability the inviscid Orr-Sommerfcld equation was solved, and the 
role of the Reynolds number did not have to be considered. The lateral distribution 
of the phase-locked fluctuations a t  the imposed frequency agreed very well with the 
results extracted from the eigenfunctions satisfying the inviscid equations (e.g. see 
the comparisons made by Weisbrot & Wygnanski 1988 for the case of a turbulent 
mixing layer). The primary instability in the wall jet is affected by viscosity in spite 
of the fact that the outer region of the wall jet is inviscidly unstable. The no-slip 
condition a t  the surface not only modifies the shape of the computed eigenfunctions 
but also provides viscous stresses and enhances the dissipation which may cause an 
earlier decay of the harmonic motion. The incoherent turbulent fluctuations may 
increase this dissipation and the nonlinear interactions between the coherent and 
incoherent fluctuations may provide a cascade mechanism through which the effects 
of viscosity are enhanced. All these interactions, which are not accounted for in the 
model, might be lumped together into an equivalent viscous term by introducing an 
eddy viscosity (see also Liu 1971; Tam & Chen 1979; Marasli, Champagne & 
Wygnanski 1989). Since the Reynolds number appears as a parameter in the 
Orr-Sommerfeld equation a choice of fictitious Re introduces an indeterminacy not 
present in the inviscid calculations. For example, the experimental results plotted in 
figure 19, which were taken a t  Re, = lo4, agree reasonably well with the theoretical 
model provided that the eddy viscosity is 10 times larger than the viscosity of the 
fluid (i.e. the selected Re was lo3). It should be stressed that the choice of an eddy 
viscosity is arbitrary and may not be related to any physical mechanism existing in 
the flow. In  other examples, the ratio between actual and the selected Reynolds 
numbers providing the best agreement with the model was different. 

In  order to examine the streamwisc evolution of a disturbance with some degree 
of consistency we selected an initial value for the eddy viscosity and assumed that 

V, Li, Ym/z. (3.11) 

This assumption is a t  least equivalent to the initial normalization of the amplitudes 
by the amplitude measured at the initial X-location. A comparison between the 
measured and the calculated amplitudc and phase distribution based on the slightly 
divergent model, proposed in equations (3.6)-(3.10) is shown in figure 20(a, b ) .  
The initial ratio of v/v, selected was approximately 5.2% (at X / b  = 30 where 

b/v,  = 530) and each amplitude in the figure was normalized by its local maximum 
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amplitude measured at  the given X-location. Note that the definition (3.11) yields a 
constant R = Urn Ym12/v, a t  all X-locations. The lateral distribution of amplitudes 
across the flow is reasonably well represented by the model but the agreement 
between 'theory ' and experiment is inferior to the agreement achieved in free shear 
flows (e.g. the mixing layer - Weisbrot & Wygnanski 1988 ; the plane wake - Marasli 
et al. 1989). This may stem from the fact that in the free shear flows mentioned, the 
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shape of the normalized mean velocity distribution is insensitive to the forcing and 
it does not even change when the flow undergoes transition from a laminar to a 
turbulent state. The velocity profile in the inner portion of the wall jet is distorted 
by strong perturbations, as best witnessed by the difference between laminar and 
turbulent profiles (e.g. Tsuji et al. 1977). Mean flow distortion by the primary 
instability makes the velocity profile susceptible to a secondary instability which 
might have a very different eigenfunction associated with it. This susceptibility was 
not investigated here. 

The overall amplification ratio of the integrated amplitudes across the flow, 

(3.12) 

was compared to the amplification obtained from the slightly divergent model, 

The comparison is plotted on figure 20(c). One can deduce that the amplification of 
harmonic disturbances in the direction of streaming is fairly well predicted by the 
linear model. This was not the case when the inviscid model was applied to free shear 
flows (e.g. Gaster et al. 1985). The current improvement in the prediction is 
attributed to the inclusion of eddy viscosity which may account for turbulent 
dissipation by reducing the effective Re and, through it, the amplification rate in the 
streamwise direction. 

3.6. The modi$cation of large coherent structures by two-dimensional excitation 
of thejow 

In this section we shall explore the changes that took place in the large-scale 
structures in response to the external excitation. We shall particularly look for effects 
taking place near the solid surface in order to ascertain the reasons for the reduction 
in 7,. The improvement in the two-dimensionality of the large-scale structures is one 
such effect which had been observed in both the mixing layer and in the wake 
(Wygnanski et al. 1979; Wygnanski, Champagne & Marasli 1986). 

The coherence spectra calculated from ' n  ' buffers of the velocity fluctuations, 
sensed by two probes separated in the spanwise direction is given by 

[ 15 F ~ ( o , ~ ) F , ( A z , ~ ) ~ ] ~  

c Iw4.f 112 5 I4Wf )I2 
Coh (AZ, f )  = '-' (3.14) 

i-1 (-1 

and provides a convenient measure of the degree of two-dimensionality attributable 
to each scale (or frequency) of the motion. Two-point correlations of the broad- 
frequency signal also yield a measure of two-dimensionality which is biased 
somewhat towards the most energetic eddies. The data plotted in figure 21 represent 
coherence a t  spanwise separation distances ranging from 50 to 125 mm (corres- 
ponding to AZ/Yrn,, varying from 2 to 5). The measurements were done across the 
entire wall jet, at X / b  30, in the presence and in the absence of external excitation. 
The frequency chosen to be shown was 34 Hz corresponding to St = f v3 /J2  = 
88 x The results plotted in figure 21 correspond to four Y-locations: starting a t  
the outer edge of the wall jet (Y/Y,,, x 2), proceeding to  the vicinity of the inflexion 
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FIQURE 21. Spanwise coherence measured a t  four levels above the surface at X / b  = 30, = 15 m/s, 
Re, = 5000. (a)  Y/Ym12 x 2, U/U, x 0.1; ( b )  Y/Ym,, x 1, U / U ,  x 0.5; ( c )  Y/Y,,, x 0.15, U/Um x 1; 
( d )  Y/Ym,, x 0.01, U/Um x 0.5. (i) Unforced; (ii) forced at 34 Hz, St x 1015 = 88. 

point of the mean velocity profile (YlY,,, x l ) ,  going down to the location at which 
U z Urn and ending in the vicinity of the wall. The spanwise coherence in the outer 
part of the unforced jet is negligible provided AZ/Y,,, > 2 (figure 2 1 a ) .  For AZ/Y,,, 
< 2 the coherence in the unforced flow exceeds the value of 0.15 over a broad range 
of low frequencies and Y-locations, suggesting that the large-scale structures 
occurring naturally in the flow are somewhat coherent over this span. There is also 
a distinct peak in the coherence level at around 30 Hz (St x 1015 = 78 see figure 
21c, d )  which is noticeable even when AZ/Y,,, = 5 within the inner part of the 
unforced wall jet. If this St is associated with the natural coherence of the large 
eddies, then the forcing frequency used in the experiment is very close to being the 
frequency which undergoes, naturally, the highest level of amplification at  this 
particular X-location. 

External excitation increased the spanwise coherence to 0.75 at the outer edge of 
the wall jet (figure 2 1 a )  but failed to have any effect near Y/Y,,, = 1 (figure 21b) .  
This effect may be explained with the aid of figure 19 which is representative of the 
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FIGURE 22. Two-point correlation measurements plotted in the (t,Z)-plane, ( a )  in the outer region 
of the flow, Y/Y,,, = 1.8, U/U, = 0.1 ; ( b )  near the surface, Y/Y,,, = 0.01, U/U, = 0.5, ( i )  Unforced, 
(ii) forced at  34 Hz. 

coherent amplitude distribution of the streamwise velocity fluctuations in the forced 
wall jet. The maximum amplitude of the coherent motion in the outer part of the jet 
occurs around Y/Y,,, = 1.8 while the minimum occurs at Y/Y,,, = 1, and therefore 
one should not expect any improvement in the coherence in the vicinity of this Y- 
location. The improvement in the coherence observed in the inner region of the wall 
jet (at Y/Ym12 = 0.15 and 0.01) can also be associated with the relatively large 
amplitude of the imposed oscillations. It is interesting to note that the spanwise 
coherence in the forced wall jet did not diminish on increasing A 2  and it was actually 
higher near the surface than in the outer edge of the jet. 

Contour plots of the correlation coefficient 

J:m u’(0, t) u’(A2, t + At) dt 
Cor (AZ, At) = (3.15) 

u’(0, t ) ,  dt]t [ JYrn u’(A2, t ) ,  dt]t [L 
taken at Y/Y,,, = 1.8 and 0.01 are shown in figure 22(a) and 2 2 ( b )  for the forced 
(St = f v3 /J2  = 88 x 10-15) and unforced flows investigated at Rej = 5000. The 
minimum separation distance for these data was 25mm. The contour plots 
representing the natural flow exhibit some periodic behaviour particularly near the 
surface (figure 2 2 b ) .  One may also detect a preferred spanwise wavelength of 
AZ/Ym!, = 2 in the outer region of the jet. 

Forcing the wall jet not only increased the spanwise extent of the highly correlated 
region but made it much more periodic in time. The primary eddies appear to  be two- 
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dimensional and regular, but a susceptibility to spanwise modes is also apparent. For 
instance a t  Y/Y,,, = 1.8, the local maximum correlation measured at At = +30 ms 
is displaced by AZ/Y,,, = 3 relative to the maximum correlation measured at  
At = 0 and A 2  = 0. A similar though less clear observation may be made near the 
surface. These results point to the possibility that two spanwise modes interact in a 
resonant fashion with a fundamental two-dimensional mode to produce a staggered 
(subharmonic) three-dimensional pattern. This process, which contributes to the 
destabilization of the laminar boundary layer, might also be responsible for the 
limited spanwise extent of the primary eddies in the wall jet and for the limited 
success of the linear stability model in predicting the two-dimensional coherent 
motion. 

One may proceed to investigate the secondary instability of the forced wall jet on 
the basis of these preliminary observations, but this aspect is not contemplated in the 
immediate future unless numerical simulation (H. Fasel 1990, personal communi- 
cation) indicates that this is an important mechanism governing the distortion of the 
large eddies. Nevertheless, the unexpected reduction in the mean skin friction 
prompted us to examine the phase-locked distribution of this quantity over two 
periods of the forcing frequency. The data plotted in figure 23 are based on the phase- 
locked analysis of [a( U)/au],  measured at various streamwise locations. The 
oscillations in the skin friction correspond to the oscillations imposed on the flow, and 
their average is represented by a solid horizontal line on the figure. The dashed line 
represents the wall stress measured in the absence of forcing, and thus the difference 
between these two lines indicates the local reduction in 7,. It is interesting to note 
that the maximum skin friction observed during any phase of the forced oscillation 
at any streamwise location corresponds approximately to the mean skin friction of 
the unforced flow (figure 23). 

4. Conclusions 
Two-dimensional excitation of the plane turbulent wall jet in the absence of an 

external stream has no appreciable effect on the rate of spread of the jet nor on the 
decay of its maximum velocity. In fact the mean velocity distribution plotted in 
the conventional similarity coordinates is not altered by the external excitation 
in any obvious manner. Careful examination of the flow near the surface (i.e. for 
0 < Y+ < 100) reveals some profound differences which manifest themselves in 
reducing the skin friction. Local reductions of 30% in the wall stress, as a 
consequence of such an excitation, were not uncommon. The skin-friction drag, 
which is the only contributor to the loss of momentum in this flow, was also reduced 
by a comparable amount. The production of turbulent energy near the surface was 
reduced resulting in a lowering of the intensities of the streamwise component of the 
velocity fluctuations. These effects, which were observed in the fully developed 
region of the wall jet (i.e. at X / b  > 30), are insensitive to the method of forcing but 
they are sensitive to the frequency and the amplitude of the excitation. The outer 
part of the wall jet was not affected by the excitation, nor was the defect law in the 
inner region of the flow affected provided the distance from the surface exceeded 
Y+ x 30. 

External excitation enhanced the two-dimensionality and the periodicity of the 
coherent motion. This enhancement is clearly visible near the surface and near the 
free interface of the turbulent flow. Spectral analysis and flow visualization suggest 
that the large coherent structures in this flow might be identified with the most- 
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FIGURE 23. The phase dependence of the skin friction at various streamwise locations: 
--_ , unforced; -, average skin friction with forcing. St x 10l6 = 17, Re, = 7500. 

amplified primary instability modes of the mean velocity profile. Detailed stability 
analysis confirms this proposition though not a t  the same level of accuracy as i t  did 
in many free shear flows. 

The effects of forcing on the other components of the velocity fluctuations will be 
investigated in future experiments. I n  particular, the spanwise component of the 
velocity fluctuations near the surface will be measured in order to explore further the 
correlation between the improvement in the two-dimensionality of the large-scale 
motion and the reduction in 7,. Since most wall-jet applications occur in the presence 
of an external flow, the next phase of this investigation will incorporate a moving 
stream in a wind tunnel. 

The work was supported in part by a grant from AFOSR (contract number 
AFOSR-88-0176) and monitored by Dr J. MeMichael. 
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